On the evaluation of Matsubara sums
نویسنده
چکیده
Given a connected (multi)graph G, consisting of V vertices and I lines, we consider a class of multidimensional sums of the general form SG := ∞ ∑ n1=−∞ ∞ ∑ n2=−∞ · · · ∞ ∑ nI=−∞ δG(n1, n2, . . . , nI ; {Nv}) ( n1 + q 2 1 ) ( n2 + q 2 2 ) · · · ( nI + q 2 I ) , where the variables qi (i = 1, . . . , I) are real and positive and the variables Nv (v = 1, . . . , V ) are integer-valued. δG(n1, n2, . . . , nI ; {Nv}) is a function valued in {0, 1} which imposes a series of linear constraints among the summation variables ni, determined by the topology of the graph G. We prove that these sums, which we call Matsubara sums, can be explicitly evaluated by applying a G-dependent linear operator Ô′ G to the evaluation of the integral obtained from SG by replacing the discrete variables ni by continuous real variables xi and replacing the sums by integrals.
منابع مشابه
Strong Laws for Weighted Sums of Negative Dependent Random Variables
In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.
متن کاملOn the Complete Convergence ofWeighted Sums for Dependent Random Variables
We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.
متن کاملInservice trainings for Shiraz University Medical Sciences employees: Effectiveness assessment by using the CIPP model
become one of the core components in survival and success ofany organization. Unfortunately, despite the importance oftraining evaluation, a small portion of resources are allocated tothis matter. Among many evaluation models, the CIPP model orContext, Input, Process, Product model is a very useful approachto educational evaluation. So far, the evaluation of the trainingcourses mostly provided ...
متن کاملOn the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables
In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.
متن کاملThe Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables
In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 79 شماره
صفحات -
تاریخ انتشار 2010